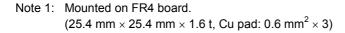
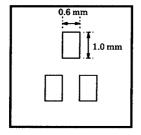
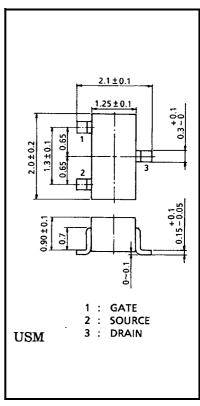


SSM3J05FU


- · Small package
- Low on resistance : $R_{on} = 3.3 \Omega \text{ (max)} \text{ (@V}_{GS} = -4 \text{ V)}$

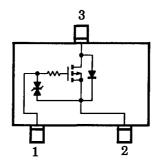

: $R_{on} = 4.0 \Omega \text{ (max) } (@V_{GS} = -2.5 \text{ V})$


• Low gate threshold voltage

Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DS}	-20	V	
Gate-source voltage		V_{GSS}	±12	V	
Drain current	DC	ID	-200	mA	
	Pulse	I _{DP}	-400	ША	
Drain power dissipation (Ta = 25°C)		P _D (Note 1)	150	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	





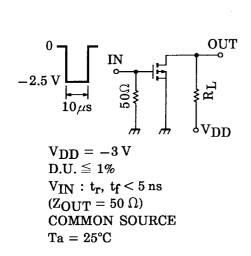
Weight: 0.006 g (typ.)

Marking

Equivalent Circuit

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.


Electrical Characteristics (Ta = 25°C)


SSM3J05FU

Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage curre	ate leakage current I_{GSS} $V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$		_	_	±1	μΑ	
Drain-source breal	kdown voltage	V (BR) DSS	$I_D = -1 \text{ mA}, V_{GS} = 0$	-20	_	_	V
Drain cut-off curre	nt	I _{DSS}	$V_{DS} = -20 \text{ V}, V_{GS} = 0$	_	_	-1	μА
Gate threshold vol	tage	V _{th}	$V_{DS} = -3 \text{ V}, I_D = -0.1 \text{ mA}$	-0.6	_	-1.1	V
Forward transfer a	dmittance	Y _{fs}	$V_{DS} = -3 \text{ V}, I_D = -50 \text{ mA}$ (Note 2)	100	_	_	mS
Drain-source ON resistance		R _{DS (ON)}	$I_D = -100 \text{ mA}, V_{GS} = -4 \text{ V}$ (Note 2)	_	2.1	3.3	Ω
			$I_D = -50 \text{ mA}, V_{GS} = -2.5 \text{ V}$ (Note 2)	_	3.2	4.0	
Input capacitance	acitance $V_{DS} = -3 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$		_	27	_	pF	
Reverse transfer c	se transfer capacitance C_{rss} $V_{DS} = -3 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$		_	7	_	pF	
Output capacitance		C _{oss}	$V_{DS} = -3 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	21	_	pF
Switching time	Turn-on time	t _{on}	$V_{DD} = -3 \text{ V}, I_{D} = -50 \text{ mA},$ $V_{GS} = 0 \sim -2.5 \text{ V}$	_	70	_	ns
	Turn-off time	t _{off}		_	70	_	

Note 2: Pulse test

Switching Time Test Circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = -100 μA for this product. For normal switching operation, V_{GS} (ON) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(Relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (ON))

Please take this into consideration for using the device.

VGS recommended voltage of -2.5 V or higher to turn on this product.